134 research outputs found

    Efficiency and equity of speed limits in transportation networks

    Get PDF
    This paper examines the impact of speed limits on network efficiency, in terms of total travel time of all road users, and equity among road users from different origin-destination (OD) pairs, in terms of the change of travel time after imposing a speed limit scheme. We find that after imposing a speed limit scheme, the total travel time of all road users may decrease or increase; road users of some OD pairs may experience longer travel time, while other OD pairs may have shorter travel time. In view of the importance of speed limits on network efficiency and equity, we subsequently develop a bi-level programming model for designing the optimal speed limit scheme that maximizes the network efficiency while considering the equity issue. A global optimization approach that is suitable for bilevel programming models with finite discrete upper-level decision variables is proposed. Moreover, a conic quadratic mixed-integer linear programming approach is developed to solve relaxed models of the bi-level formulation of speed limit design. Two numerical examples are carried out

    CONTAINER TRANSPORTATION NETWORK MODELING AND OPTIMIZATION

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Optimal electric bus fleet scheduling considering battery degradation and non-linear charging profile

    Get PDF
    This study aims to determine the battery electric bus service and charging strategy to minimize the total operational cost of transit system, where the cost incurred by battery degradation and non-linear charging profile is taken into account. We formulate a set partitioning model for this problem, subject to predefined trip schedule and limited charging facilities. A tailored branch-and-price approach is then proposed to find the global optimal solution. In particular, we develop an effective multi-label correcting method to deal with the pricing problem (i.e., generating columns) in column generation procedure within the branch-and-price framework, coupled with a dual stabilization technique with an aim to accelerate the convergence rate. Meanwhile, a branch-and-bound solution approach is adopted to guarantee optimal integer solutions. Numerical experiments and a case study arising from real transit network are conducted to further assess the efficiency and applicability of the proposed method. Our experiments confirm that, despite the complexity of the considered problem, optimal solution can still be generated within reasonable computational time using the proposed algorithm. The results also show considerable cost saving (about 10.1–27.3% less) if this optimization model is implemented, mainly contributed by the substantial extension of battery life. A number of managerial insights stemmed from the numerical case study are outlined, which can help transit operators formulate more cost-efficient electric bus fleet scheduling plans

    Optimal subsidy design for shore power usage in ship berthing operations

    Get PDF
    202210 bckwRGCPublished12 month

    Model on empirically calibrating stochastic traffic flow fundamental diagram

    Get PDF
    This paper addresses two shortcomings of the data-driven stochastic fundamental diagram for freeway traffic. The first shortcoming is related to the least-squares methods which have been widely used in establishing traffic flow fundamental diagrams. We argue that these methods are not suitable to generate the percentile-based stochastic fundamental diagrams, because the results generated by least-squares methods represent weighted sample mean, rather than percentile. The second shortcoming is widespread use of independent modeling methodology for a family of percentile-based fundamental diagrams. Existing methods are inadequate to coordinate the fundamental diagrams in the same family, and consequently, are not in alignment with the basic rules in probability theory and statistics. To address these issues, this paper proposes a holistic modeling framework based on the concept of mean absolute error minimization. The established model is convex, but non-differentiable. To efficiently implement the proposed methodology, we further reformulate this model as a linear programming problem which could be solved by the state-of-the-art solvers. Experimental results using real-world traffic flow data validate the proposed method

    Consolidating Bus Charger Deployment and Fleet Management for Public Transit Electrification: A Life-Cycle Cost Analysis Framework

    Get PDF
    Despite rapid advances in urban transit electrification, the progress of systematic planning and management of the electric bus (EB) fleet is falling behind. In this research, the fundamental issues affecting the nascent EB system are first reviewed, including charging station deployment, battery sizing, bus scheduling, and life-cycle analysis. At present, EB systems are planned and operated in a sequential manner, with bus scheduling occurring after the bus fleet and infrastructure have been deployed, resulting in low resource utilization or waste. We propose a mixed-integer programming model to consolidate charging station deployment and bus fleet management with the lowest possible life-cycle costs (LCCs), consisting of ownership, operation, maintenance, and emissions expenses, thereby narrowing the gap between optimal planning and operations. A tailored branch-and-price approach is further introduced to reduce the computational effort required for finding optimal solutions. Analytical results of a real-world case show that, compared with the current bus operational strategies and charging station layout, the LCC of one bus line can be decreased significantly by 30.4%. The proposed research not only performs life-cycle analysis but also provides transport authorities and operators with reliable charger deployment and bus schedules for single- and multi-line services, both of which are critical requirements for decision support in future transit systems with high electrification penetration, helping to accelerate the transition to sustainable mobility

    Data and Code Disclosure and Sharing Policy of communications in transportation research

    Get PDF
    202309 bcvcVersion of RecordNot mentionPublishe

    Risk management in liner ship fleet deployment: a joint chance constrained programming model

    Get PDF
    This paper provides a tangible methodology to deal with the liner ship fleet deployment problem aiming at minimizing the total cost while maintaining a service level under uncertain container demand. The problem is first formulated as a joint chance constrained programming model, and the sample average approximation method and mixed-integer programming are used to deal with it. Finally, a numerical example of a liner shipping network is carried out to verify the applicability of the proposed model and solution algorithm. It is found that the service level has significant effect on the total cost

    Clustered coverage orienteering problem of unmanned surface vehicles for water sampling

    Get PDF
    202105 bchyNot applicableOthersNSFC projectsPublished12 month
    corecore